Journal of Organometallic Chemistry, 164 (1979) 107–121 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

ACETYLENE INSERTION AND DOUBLE INSERTION REACTIONS OF

RHODIUM HYDRIDO COMPLEXES+

H.ESHTIAGH-HOSSEINI, JOHN F. NIXON* and JOHN S. POLAND‡ School of Molecular Sciences, University of Sussex, Brighton (Great Britain)

(Received September 15th, 1978)

Summary

RhH(L)(PPh₃)₃ (L = CO or PF₃) react with RC \exists CR (R = CF₃, or CO₂Me) to give vinyl complexes trans-Rh(L)(PPh₃)₂(CR=CHR). These complexes undergo further acetylene insertion; *e.g.*, trans-Rh(L)(PPh₃)₂(CR¹=CHR¹) (R¹ = CF₃) reacts with R²C \equiv CCR² (R² = CO₂Me) and trans-Rh(L)(PPh₃)₂(CR² \equiv CHR²) reacts with R¹C \equiv CR¹ to give unexpectedly the same double inserted product trans-Rh(L)(PPh₃)₂(CR²=CR²-CR¹=CHR¹) and a possible reaction mechanism is presented. Rh(PF₃)(PPh₃)₂-[C(CF₃)=CHCF₃] and t-butyl bromide give CF₃CH=CHCF₃, isobutene and trans-RhBr(PPh₃)₂(PF₃).

Introduction

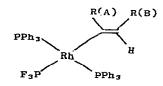
The formation of σ -vinylic transition-metal complexes and their consequent reactivity are of interest on account of their potential importance in transition-metal catalysed oligomerisation of olefins or acetylenes [1-3].

Synthetic routes include reactions of transition-metal halides with Grignard, alkenyl lithium, or similar reagents [4-6], metal complex anions with activated alkenyl halides [7, 8],

oxidative-addition of alkenyl halides to co-ordinatively unsaturated transition-metal complexes [9-17], HX attack on co-ordinated acetylenes [10, 18-21], acetylene insertion into M-H or M-C bonds [22-36], and addition to the triple bond of an acetylide [37, 38]. The majority of alkenyl complexes made this way involve electronwithdrawing substituents to activate the acetylene bonds.

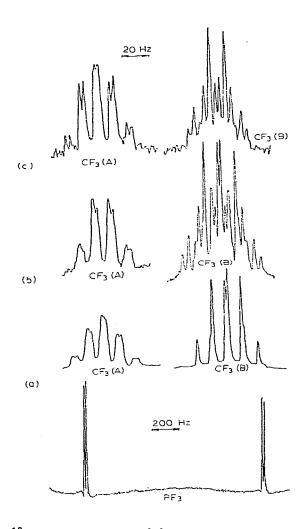
Although many alkenyl complexes have been prepared and fully characterised, they are often found to be relatively inert towards further reaction, e.g., with acetylenes to give double inserted products. IrH(CO)(PFh₃)₃ and IrHCl₂(PEt₃)₃ have been shown to react with activated disubstituted acetylenes to give σ -alkenylh²-acetylene complexes [30], while further studies showed the formation of novel metallocycle-alkenyl complexes [39, 40].

Double insertion reactions have been demonstrated only in very few cases, thus Stone *et al.* [41] have shown that $\operatorname{RuHL}_2(h^5-C_5H_5)$ (L = CO, PPh₃) and CF₃C=CCF₃ afford $\operatorname{Ru}(\operatorname{PPh}_3)_2(h^5-C_5H_5)[cis-C(CF_3)]$. CH(CF₂)], $\operatorname{Ru}(\operatorname{CO}_2(h^5-C_5H_5)[trans-C(CF_3)C=CH(CF_3)]$ and $\operatorname{RuL}(h^5-C_5H_5)[C(CF_3)=C(CF_3)C(CF_3)]=CH(CF_3)]$. The doubly inserted complexes $\operatorname{Ru}(\operatorname{PPh}_3)_2(h^5-C_5H_5)[C(CO_2Me)=C(CO_2Me)C(CF_3)=CH(CF_3)]$ [42] have been described and $\operatorname{C}(\operatorname{CO}_2Me)=\operatorname{C}(\operatorname{CO}_2Me)$ has been inserted into PdBr(PBu₃)₂(CH=CPh₂) [43] while a few Pt^{II} complexes have been reported very recently [44].


In view of the ready formation of alkenyl complexes of the type $Rh(CO)(PPh_3)_2(CR=CHR)$ [31] (R = CO_2Me , CO_2Et , CO_2H , Ph, CF_3) from $RhH(CO)(PPh_3)_3$ and the similarity in chemical behaviour of CO and PF₃ [45], we decided to study the reactions of $RhH(PF_3)_x$ -(PPh_3)_{4-x} (x = 1, 2) [46, 47] with acetylenes containing electron-withdrawing substituents.

Results and discussion

(a) Mono-insertion reactions


Hexafluorobut-2-yne readily inserts into the rhodium-hydrogen bond of $RhH(PI_3)(PPh_3)_3$ to yield yellow crystals of the vinyl complex trans-Rh(PF_3)(PPh_3)_2[cis-C(CF_3)=CH(CF_3)], (I), whose structure can be unambiguously defined by ¹H, ¹⁹F and ³¹P NMR spectroscopy (see Table for data).

In the ¹⁹F NMR of (I) the PF₃ resonance occurs as a low field widely spaced doublet [¹J(PF)] of doublets [²J(<u>F₃PRh</u>)] of triplets [³J(<u>F₃PRhPPh₃</u>)]. A quintet pattern at higher field is assigned to the

 $[(I) R = CF_3; (II) R = CO_2Me]$

.

¹⁹F NMR spectrum of (I) on irradiation at the resonant frequency of (a) the PPh₃; (b) the PF₃; and (c) the unique vinyl proton in C_0D_0 solution

•

CONFLUEN	δ (PF ₃)	(દાનગુરે	ф(bF ₃)	ФСР ₃ (Л)	40F3(B)	(4d) [₇	(เห ² ส.ส.) (₇	$\delta(PF_3) = \delta(PP_3) = \delta(PF_3) = \Phi(PF_3) = \Phi(PF$	(14484) [²
$Rh(PF_3)(PPh_3)_2(C(CF_3)=CH(CF_3)](1)^{3-1}$	22,8	111.3		18,3 50,0	57.6 1308	8061	239	144.0	56.1
Rh(PF ₃)(PPh ₃) ₂ [C(CO ₂ Me)=CH(CO ₂ Me)](1]) ^{d=u}	20.7	110.4	1.9.6	t		1307	265	134.2	56.1
$Rh(PF_{3})(PP_{3})_{2}[C(Co_{2}Ne)=C(Co_{2}Ne)C(CF_{3})=C(CF_{3})H](111)^{b_{2}d_{1}e_{1}}$	r	ı	18.8	58,1	55.1	1310	ı	J	ŧ
Rh(CO) (PPh ₃) 2[C(CO ₂ 4e)=C(CO,MC) C(CF ₃)=C(CF ₃)H] (IV) ^b	I	110.4	ı	58.8	56.9	1	ı	144.0	1

. 7 7

-

 $b^{-5}I[\underline{c\underline{r}}_{3}(A)\underline{c\underline{r}}_{3}(B)] = \frac{3}{2}I[\underline{c\underline{r}}_{3}(B)H] = 11.7 (1),11.5 (11),12.2 (1V).$

 c^{5} $J_{1}\left[c\underline{F_{3}}(B)\underline{P}^{P}h_{3}\right] \approx 1.5$

 $d^2 J_1(P\underline{Y}_3\underline{N}) = 17.8(1); 18.3(11); 18.0(11).$

 $\begin{bmatrix} 3\\ 1 \end{bmatrix} CE_3(A) \underline{Rh} \end{bmatrix} = 3.0.$

110

TABLE

NER CHENICAL SHIFT AND COUPLING CONSTANT DATA

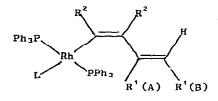
 δ in ppm upfield from TNP, Φ in ppm upfield from CFCl $_3,$ J in Hz.

ł

CF₃(A) group and arises from the overlap of two 1:3:3:1 quartets caused by spin coupling to $CF_3(P)$ and the phosphorus of the PF_3 group. On expansion, further doublet splitting via interaction with the rhodium nucleus can be resolved. The highest field resonance assigned to the $CF_3(B)$ group is a multiplet arising from coupling to the vinylic hydrogen, CF3(A) and the phosphorus nuclei of the two co-Assignment of the coupling constants was ordinated PPh3 ligands. facilitated by selective phosphorus decoupling studies described The ^{19}F resonances of the PF₃ and CF₃ groups obtained by \sim below. semultaneous irradiation at the resonant frequency of the PPh3 ligands are shown in Figure 1(a). The PF3 resonance as expected, collapses to a doublet of doublets while the $CF_3(A)$ resonance is largely unchanged; however, the CF₃(B) resonance simplifies to two overlapping quartets $[^{5}J{CF_{3}(A)CF_{3}(B)}]$ and $[^{2}J{CF_{3}(B)H}]$. When the ¹⁹F NMR spectrum [Figure 1(b)] is recorded with simultaneous decoupling of the PF3 phosphorus, the $CF_3(A)$ resonance occurs as a quartet $[5J(CF_3(A)CF_3(B))]$, each line being further doubleted by coupling to rhodium; however, the resonance of CF3(B) remains unchanged. The "F resonances of CF3 groups observed while simultaneously irradiating at the resonant frequency of the unique vinyl proton are shown in Figure 1(c). The $CF_3(B)$ resonance as expected gives a quartet [${}^{5}J{CF_3(A)CF_3(B)}$] of triplets $[{}^{5}J{CF_{3}(B)PPh_{3}}]$ and the CF₃(A) resonance remains unchanged. The 31 P NMR spectrum exhibits a low field resonance for the PF₃ ligand consiting of a quartet ['J(PF)] of doublets [${}^{1}J(PF_{3}Rh)$] of triplets $[^{2}J(PRhP')]$ of quartets $[^{4}J\{PF_{3}CF_{3}(A)\}]$ and a high field resonance assigned to the PPh3 ligands which appears as a doublet $[^{2}J(PRhP')]$ of doublets $[^{1}J(PPh_{3}Rh)]$ of quartets $[^{5}J(PPh_{3}CF_{3}(B))]$ The NMR spectra are only consistent with PPh3 groups occupying trans- positions (vide supra) while the magnitude of the coupling constants, ⁵/[CF₃(A)CF₃(B)] and ³/[CF₃(B)H], show that the CF₃ groups are mutually cis[18, 19, 22, 29, 31, 33, 34, 48-50]. The 'H NMR spectrum as expected shows a quintet pattern from overlapping of two 1:3:3:1 quartets. Coupling constant and chemical shift data are listed in the Table.

The complex, $Rh(PF_3)(PPh_3)_2[C(CO_2Me)=CH(CO_2Me)]$, (II), prepared by reaction of $RhH(PF_3)(PPh_3)_3$ with dimethyl acetylenedicarboxylate (DMA) at room temperature is formulated as above on the basis of elemental analysis and ¹H NMR spectroscopy. No definite assignment of the stereochemistry of the CO_2Me groups could be made on the basis of the ¹H NMR spectrum, although a *trans*- configuration has been proposed for the analogous carbonyl complex, on the basis of cleavage of the metal-carbon bond with anhydrous HCl to obtain dimethyl fumarate [31]. Interestingly, in the reaction between RhH(PF₃)₂(PPh₃)₂ and DMA, preferential displacement of PF₃ occurs to give a complex of structure similar to (II), which was fully characterised on the basis of ¹H, ¹⁹F and ³¹P NMR spectroscopy. The ³¹P NMR spectrum is very similar to that of Rh(PF₃)(PPh₃)₂- $[C(CF_3)=CH(CF_3)]$, as is the ¹⁹F NMR spectrum in the PF₂ region, but the ¹H NMR spectrum exhibited two singlets in the CO₂Me region in addition to those expected for (II), suggesting that a mixture of isomers might be present.

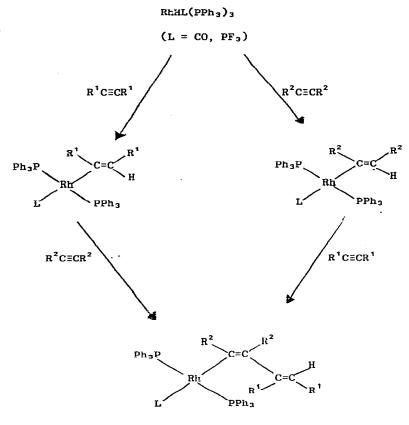
Reaction of (I) with t-butyl bromide in a sealed NMR tube at 60° C for two days produces RhBr(PF₃)(PPh₃)₂, *iso*-butene and a mixture of *cis*- and *trans*-CF₃CH=CHCF₃.


 $\frac{\operatorname{Bu}^{\mathcal{L}}\operatorname{Br}}{\operatorname{Br}}$ Rh(PF₃)(PPh₃)₂[C(CF₃)=CH(CF₃)] \longrightarrow RhBr(PF₃)(PPh₃)₂

+ CH_3 + $C=CH_2$ + $CF_3CH=CHCF_3$ CH₃

In this reaction the first step may involve an oxidative-addition reaction followed by β -hydrogen elimination to give iso-butene and form a rhodium(III) hydride intermediate. Subsequent hydrogen migration would then give $RhBr(PF_3)(PPh_3)_2$ and $CF_3CH=CHCF_3$. We proposed a similar mechanism for the reaction between $Bu^{\mathcal{L}}Br$ and Rh(h³-ally1)(PF₃)(PPh₃)₂ [51]. All products obtained from this reaction were characterised by their "F and/or ¹H NMR spectra. The three line pattern of intensity 1:1:1 centred at 61.0 PPM observed in the ¹⁹F NMR spectrum is attributable to the known cis-CF₃CH=CHCF₃ [52] and a very similar pattern centred at 66.2 PPM is tentatively assigned to the trans- isomer whose spectrum does not seem to have been reported proviously. In the 'H NMR spectrum the low field resonances centred at $\tau = 4.18$ are attributable to the cis- isomer [52] and the slightly higher resonances centred at $\tau = 4.8$ are assigned to the *trans*-isomer. The compound RhBr-(PF₃)(PPh₃)₂ was identified by a comparison of its IR spectrum with that of trans-RhCl(PF3)(PPh3)2 [53].

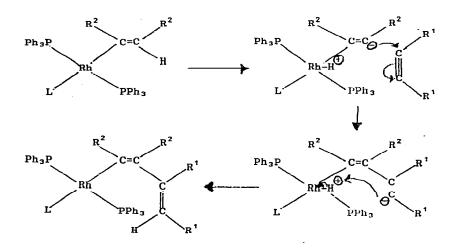
(b) Double insertion reactions


In certain cases the vinyl complexes (I) and (II) can undergo further insertion reactions (see Scheme). The reaction involving treatment of $R^2C\equiv CR^2$ with $Rh(L)(PPh_3)_2(CR^1=CHR^1)$; $(R^1 = CF_3, R^2 = CO_2Me, L = CO, PF_3)$ takes place slowly and the products are *trans*-Rh $(L)(PPh_3)_2[C(CO_2Me)=C(CO_2Me)C(CF_3)=C(CF_3)H]$ [(III), L = PF_3; (IV), L = CO]. The double inserted products are, of course, those expected on the accepted mechanism of acetylene insertion into the <u>existing</u> rhodium-carbon bond of the alkenyl metal complex. In the comparatively rapid reaction of $R^2C\equiv CR^2$ with both Rb $(L)(PPh_3)_2(CR^2=CHR^2)$ complexes (L = CO, PF_3), however, the products were also surprisingly identified as (III) and (IV), indicating that insertion in this case has occurred into the C-H bond of the original alkenyl complex

 $[R^1 = CF_3, R^2 = CO_2Me;$ (III) $L = PF_3,$ (IV) L = CO]

This unusual type of insertion has only previously been reported [41] in the reaction between $\operatorname{Ru}(h^5-C_5H_5)(PPh_3)[C(CO_2MC)-CH(CO_2Me)]$ and $\operatorname{CF_3CECF_3}$, in which the acetylene inserted solely into C-H bond to give $\operatorname{Ru}(h^5-C_5H_5)(PPh_3)[C(CO_2Me)-C(CO_2Me)C(CF_3)^{\frac{1}{2}}C(CF_3)H]$. Xray crystallographic data confirmed the structure based formerly on spectroscopic assignments [54]. The interesting feature of our work is that the direction of insertion is found to be different in two cases involving closely related alkenyl complexes leading to the same double insertion product (see Scheme).

The CiB- configuration of the CF₃ groups in the double inserted products (III) and (IV) has been established by ¹⁹F NMR spectroscopy. The ¹⁹F NMR spectrum of Rh(PF₃)(PPh₃)₂ $[C(CO_2Ne)=C(CO_2Me)C(CF_3)=$ $C(CF_3)H]$ exhibits a low field widely spaced doublet $[^{4}J(PF)]$ of doublets $[^{2}J(F_3PRh)]$ of triplets $[^{3}J(F_3PRhPPh_3)]$ for the PF₃ group, while the quintet pattern at higher field is assigned to the CF₃(B) group and arises from the overlap of two 1:3:3:1 quartets from spin coupling to CF₃(A) and hydrogen. The highest field resonance for the CF₂(A) is a quartet arising from coupling to CF₃(B). Coupling constant and chemical shift tata are listed in the Table. The ¹⁹F

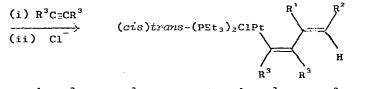

 $[R^{1} = CF_{3}, R^{2} = CO_{2}Me;$ (III) $L = PF_{3},$ (IV) L = CO]

(stereochemistry of the R² group is unknown).

Scheme

NMR spectrum of the CO analogue (IV) is very similar to (III) and the quintet pattern in the ¹⁹F NMR spectrum attributable to the $CF_3(B)$ group collapses to a quartet when the spectrum is obtained while simultaneously irradiating at the resonant frequency of the proton; the $CF_2(A)$ resonance remains unchanged. The ¹H NMR spectra of both complexes (III) and (IV) show two singlets for the CO_2Me group and multiplets for PPh₃ ligands, but the unique hydrogen of both complexes could not be detected in the spectra.

A possible mechanism which would account for the reaction involves a dipolar intermeeiate of the typw shown below:



Although this type of mechanism has been proposed previously [42] to account for the unexpected product of the reaction between $Ru(h^5-C_5H_5)(PPh_3)[(CO_2Me)C=CH(CO_2Me)]$ and hexafluorobut-2-yne, it is difficult to understand why the insertion reactions of $R^2C\equiv CR^2$ into $Rh(L(PPh_3)_2(CR^1=CHR^1)$ ($R^1 = CF_3$, $R^2 = CO_2Me$) proceeds in the 'normal' fashion since the electronic effects of $R = CF_3$ and $R = CO_2Me$ in disubstituted acetylenes are not expected to differ greatly.

Several further attempts were made to obtain double insertion complexes. $\text{Rh}(\text{CO})(\text{PPh}_3)_2(\text{CR=CHR})$ (R = CO₂H, Ph) was treated with CF₃CECCF₃ or MeCO₂CECCO₂Me and Rh(CO)(PPh₃)₂(CR=CHR) (R = CF₃, CO₂Me) with PhCECPh and HCO₂CECCO₂H, but no evidence for double insertion products was found in any of these systems.

A recent study by Clark *et al.* [44] underlines the difficulties in obtaining double inserted products in this type of system. Only in certain cases, using PtCl(PEt₃)₂(CMe=CHMe) and CF₃C=CCF₃ in acetone in the presence of AgPF₆, have double insertion reactions (and these are all of the normal type) been successful, *e.g.*,

 $[Pt(PEt_3)_2(acetone)(CR^3=CR^2]^+PF_b^-$

 $[trans, R^{1} = R^{2} = Me, R^{3} = CF_{3}; cis, R^{1} = R^{2} = Me, R^{3} = CF_{3};$ trans, R¹ = Me, R² = Cy, R³ = CF₃; cis, R¹ = Me, R² = Cy, R³ = CF₃; trans, R¹ = R² = Me, R³ = CO₂Me] Although treatment of $PdX(dpp)_2(CH_3)$ (X = C1, NO₃, solvent as the hexafluorophosphate salt) with $MeCO_2C\equiv CCO_2Me$ in CH_2Cl_2 has been reported [55] to yield the mono- or double insertion product, depending on the nature of X and the amount of acetylene used, attempts to extend this method in our laboratory [56] using $PtX(PPh_3)_2(RC=CHR)$ (X = C1, solvent as ClO_4^- salt; R = CF₃, CO₂Me) were unsuccessful.

Very recently the production of (Et)HC=C(Et)-C(Et)=C(Et)(Ph)from the reaction of NiBrL₂(Ph) with EtC=CEt in the presence of methanol indicates the likely formation of a double insertion product of the type NiBrL₂[C(Et)=C(Et)C(Et)=C(Ph)(Et)] [57].

Experimental

General procedures were as described elsewhere [58]. Reaction of RhH(PF3)(PPh3)3 with CF3C=CCF3

A mixture of RhH(PF₃)(PPh₂)₃ (1.023 g, 1.04 mmol) in benzene (20 cm³) and CF₃CECCF₃ (0.180 g, 1.11 mmol) was shaken in a sealed ampoule at room temperature for three days. The ampoule was opened on the vacuum line and no unreacted $CF_3C \equiv CCF_3$ was detected. The yellow solution was transferred to a Schlenk tube and removal of solvent gave a yellow sticky solid. The yellow residue was extracted with ether (50 cm^3) concentrated, and addition of hexane followed by cooling in the refrigerator gave yellow crystals of the complex, Rh(PF₃)(PPh₃)₂[C(CF₃)=CH(CF₃)], (I), (0.608 g, 0.69 mmol; 66%), m.p. 137-142° C (Found: C, 54.9; H, 3.7. C40H31F9P3Rh requires: C, 54.68; H, 3.55%). IR spectrum: 3070vw, 3050w, 1960vw,br, 1885vw,br, 1815vw,br, 1730vw,br, 1610w, 1588w, 1572vw, 1370w, 1343m, 1313w, 1258s, 1208m, 1192w, 1187w, 1160vw, 1120vs,br, 1096s, 1075w, 1030w, 1000w, 975vw, 923vw, 890vw, 865vs, 860vs, 845m,sh, 839vs, 818w, 811w, 765w, 760w, 754m, 748m, 741m, 735w. 730m, 725s, 720w, 713w, 710m, 704vs, 700vs, 696vs, 690m, sh, 641e, 621vw, 612w, 551m, 547m, 529vs, 524s, sh, 510m, 502m, 492w, sh, 463vw, 449vw, 433w, 390vw cm⁻¹ (Nujol mull). The product was fully characterised by ${}^{19}F$, ${}^{1}H$ and ${}^{31}P$ NMR spectroscopy (see text). ¹H NMR spectrum (τ): 2-3 (mult, 30H), 4.96 (qn,1H) (CDCl₃ solution).

Reaction of RhH(PF3)(PPh3)3 with MeCO2CECCO2Me

To RhH(PF₃)(PPh₃)₃ (1.304 g, 1.33 mmol) in benzene (15 cm³) was added slowly at room temperature $MeCO_2C\equiv CCO_2Me$ (0.195 g, 1.37 mmol) in benzene (2 cm³) and the red solution was stirred for 12 h. Hexane

(20 cm^3) was added and the solution placed in the refrigerator overnight to give yellow crystals of Rh(PF₃)(PPh₃)₂[C(CO₂Me)=CH(CO₂Me)], (II), (1.040 g, 1.10 mmol; 83%) isolated as its hexane solvate (Found: C, 61.1; H, 5.1. C48H5, 04F3P3Rh requires: C, 61.02; H, 5.445). The complex dissolves in benzene and removal of the solvent affords the benzene solvate, m.p. 110-140° C (dec) (Found: С, 62.8; Н, 4.8. C48H43O4F3P3Rh requires: C, 61.55; H, 4.62%). IR spectrum: 3055w, 1960vw,br, 1885vw,br, 1815vw,br, 1704s, 1688s, 1565m,br, 1369w,sh, 1318s, 1208s, 1188m, 1158s, 1150m,sh, 1100s, 1094m, 1072vw, 1035vw,sh, 1030w, 1019vw, 1003w, 975vw, 955vw, 925vw, 872m, 859s, 849vs, 834vs, 828m,sh, 758m, 753m, 748m, 742w, 724vw, 704m, 699s, 690m, 683s, 655vw, 620vw, 545w, 529vs, 527s, 513m, 500w, 493vw, 468w, 445w, 420w, 391w cm⁻¹ (Nujol mull). ¹Η NMR spectrum (τ): 2.1-3.0 (mult, 30H), 6.71 (s, 3H), 6.76 (s, 3H) (CDCl₃ solution); 6.37 (s, 3H), 6.45 (s, 3H) (C_6D_6 solution). The vinyl proton could not be detected.

Reaction of RhH(PF3)2(PPh3)2 with MeCO2CECCO2Me

To a suspension of $RhH(PF_3)_2(PPh_3)_2$ (0.621 g, 0.77 mmol) in benzene (25 cm^3) at room temperature was added MeCO₂C CCO₂Me (0.110 g, 0.78 mmol) in benzenc (10 cm³). A very vigorous reaction occurred and the initially rather insoluble white solid dissolved instantly to form an orange solution. The reaction mixture was stirred for a further 2 h during which time the colour slightly changed to red. The solution was concentrated under vacuum (3 cm^3) and addition of hexane gave an orange sticky solid which was washed with hexane and pumped to dryness to give an orange powder (0.45 g), m.p. 125° C (softens at 78° C) (Found: C, 55.1; C₄₂H₃₇O₄F₃P₃Rh requires: C, 58.74; H, 4.31%). Н, 4.7. The ¹⁹F, ¹H and ³¹P NMR spectra of the solid are discussed in the text. ¹H spectrum (T): 2-3 (mult), 6.1 (s), 6.25 (s), 6.66 (s), 6.67 (s) (CDCl₃ solution).

Reaction of Rh(PF3)(PPh3)2/C(CF3)=CH(CF3)/ with Bu^tBr

A mixture of $Rh(PF_3)(PPh_3)_2[C(CF_3)=CH(CF_3)]$ (0.156 g, 0.17 mmol) in C_eD_6 (with a drop of CFCl₃ added as ¹⁹F NMR standard) and *t*-butyl bromide (0.040 g, 0.29 mmol) was sealed in an NMR tube and heated at 60° C for two days. The scaled tube was opened on the vacuum line and the volatiles condensed to another NMR tube. The residual yellow solid (0.11 g) was recrystallised from benzene/ hexane and was identified as $trans-RhBr(PF_3)(PPh_3)_2$ (IR). The ¹H and ¹⁹F NMR spectra of the volatile fraction showed the presence of *iso*-butene and a mixture of *cis*- and *trans*-1,1,1,4,4,4-hexafluorobut-2-ene respectively.

Reaction of Rh(PF3)(PPh3)2(C(CO2Me)=CH(CO2Me)) with CF3C=CCF3

A mixture of $Rh(PF_3)(PPh_3)_2[C(CO_2Me)=CH(CO_2Me)]$ (0.101 g, 0.12 mmol), CF₃CECCF₃ (0.020 g, 0.12 mmol) and benzene (10 cm³) was shaken in a sealed tube for 12 h. The clear yellow solution was concentrated and a small amount of hexane was added. After 30 min some off-yellow solid was filtered off and more hexane was added to the filtrate and the solution placed in the refrigerator overnight. Yellow crystals of Rh(PF₃)(PPh₃)₂[C(CO₂Me)=C(CO₂Me)-C(CF₃)=CH(CF₃)], (III), were obtained as its benzene solvate (0.056 g, 0.05 mmol; 47%), m.p. 90° C (dec) (Found: C, 56.3; H, 4.0. C₅₂H₄₃O₄F₉P₃Rh requires C, 56.83; H, 3.91%). IR spectrum: 3055w, 1970vw,br, 1890vw,br, 1815vw,br, 1721s, 1690s, 1645vw, 1585vw, 1572vw, 1480m, 1365m, 1292m, 1260m, 1230vw, 1208m, 1185w, 1162vw, 1154s, 1145s, 1129m, 1098m, 1074vw, 1030vw, 1020vw, 1000vw, 995vw, 925w, 895vw, 881w. 865s, 859s, 851s, 839s, 835m, 756w,sh, 754m, 746m, 725vw, 703s, 698s, 689m, 678m, 543w, 525s, 513m, 500w, 464vw, 420vw, 390vw cm⁻¹ (Nujol mull). The product was further identified by ¹⁹F and [']H NMR spectroscopy. [']H NMR spectrum (\tau): 6.57 (3H), 6.73 (3H) (C.H. solution).

Reaction of Rh(PF3)(PFh3)2/C(CF3)=CH(CF3)/ with MeCO2C=CCO2Me

To $Rn(PF_3)(PPh_3)_2[C(CF_3)=CH(CF_3)]$ (0.088 g, 0.10 mmol) in benzene (containing a small amount of CFCl₃ as ¹⁹F NMR standard) was added MeCO₂C=CCO₂Me (0.18 g, 0.12 mmol). A clear solution resulted and the reaction progress was followed by ¹⁹F NMR spectroscopy. The formation of $Rh(PF_3)(PPh_3)_2[C(CO_2Me)=C(CO_2Me)(CF_3)=CH(CF_3)]$, (III), was established, but the reaction was slow and after two weeks some of the unreacted alkenyl rhodium starting material was detected in the ¹⁹F NMR spectrum.

Reaction of Rh(CO)(PPh3)2/C(CO2Me)=CH(CO2Me)] with CF3C=CCF3

A mixture of $Rh(CO)(PPh_3)_2[C(CO_2Me)=CH(CO_2Me)]$ (2.394 g, 3.00 mmol), $CF_3C=CCF_3$ (0.486 g, 3.00 mmol) and benzene (75 cm³) reacted completely when shaken in a sealed tube for 2 days. The

resulting yellow solution was transferred to a Schlenk tube and concentrated. Chromatographic separation on alumina (benzene eluant) followed by recrystallisation from benzene/hexane afforded $Rh(CO)(PPh_3)_2[C(CO_2Me)=C(CO_2Me)C(CF_3)=CH(CF_3)], (IV), as a yellow$ powder (2.389 g, 2.21 mmol; 83%), m.p. 152-156° C (dec) (Found: C, 58.9; H, 3.9. C47H37F005P2Rh requires: C, 58.75; H, 3.85%). IR spectrum: 3050vw, 1971s, 1962m, sh, 1717m, 1691s, 1687w, sh, 1663w, 1545w, 1367m, 1298s, 1274w, 1220w, 1208s, 1200w, 1180w, 1164w, 1155m, 1144s, 1120m, 1095m, 1077w, 1030w, 999w, 948vw, 890vw, 860vw, 831vw, 805vw, 790vw, 759w, 750m, 747m, sh, 724w, 708m, 703m, sh, 694m, 688w, sh, 680w, sh, 650w, 545w, 524vs, 509w, 475vw, 420vw cm⁻¹ (Nujol mull). The product was also characterised by ¹⁹F and ¹H NMR spectroscopy. ¹H NMR spectrum (T): 2.10-2.76 (mult, 30H), 6.50 (s, 3H), 6.99 (s, 3H)(CDC1₃ solution). Reaction of $Rh(CO)(PPh_3)_2(C(CE_3)=CH(UE_3))$ with $MeCO_2C=CCO_2Me$

 $Rh(CO)(PPh_3)_2[C(CF_3)=CH(CF_3)]$ (0.441 g, 0.53 mmol) in benzene (20 cm³) and MeCO₂C=CCO₂Me (0.413 g, 2.90 mmol) were sealed in an ampoule and shaken for five days at room temperature. The colour of the solution changed from yellow to orange and then to red. Evaporation to dryness followed by extraction with ether and addition of hexane to a concentrated ether solution gave (IV), whose ¹⁹F NMR spectrum was identical to that mentioned above.

Acknowledgements

We thank the S.R.C. and the Iranian Government for financial support.

References

- 1 M.L.H. Green, Organometallic Compounds, Vol.II, Methuen, London, 1968, p.312.
- S. Otsuka and A. Nakamura, Advan. Organometal. Chem., 14 (1976) 245.
- 3 P.M. Maitlis, Pure Appl. Chem., 33 (1973) 489.
- 4 H. Bürger and H.J. Neese, J. Organometal. Chem., 36 (1972) 101.
- 5 M.L.H. Green, M. Ishaq and T. Mole, Z. Naturforsch., 20b (1965) 598.
- 6 A.J. Rest, D.T. Rosevear and F.G.A. Stone, J. Chem. Soc. A, (1967) 66.
- 7 H.D. Kaesz, R.B. King and F.G.A. Stone, Z. Naturforsch., 15b (1960) 3763.
- 8 R.B. King and M.S. Saran, J. Amer. Chem. Soc., 94 (1972) 1784.

9	J.P. Collman, Acc. Chem Res., 1 (1968) 136.
10	F.E. Mann, B.L. Shaw and N.I. Tucker, J. Chem. Soc. A, (1971)
	2667.
11	A.J. Mukhedkar, M. Green and F.G.A. Stone, J. Chem. Soc. A,
	(1969) 3023.
12	J. Ashley-Smith, M. Green and F.G.A. Stone, J. Chem. Soc. A,
	(1969) 3019.
13	J. Browning, M. Green and F.G.A. Stone, J. Chem. Soc. A,
	(1971) 453.
14	W.J. Bland and R.D.W. Kemmitt, J. Chem. Soc. A, (1968) 1278.
15	P. Fitton and J.E. McKeon, Chem. Commun., (1968) 4.
16	R. Burt, M. Cooke and M. Green, J. Chem. Soc. A, (1970) 2975.
17	A.J. Mukhedkar, V.A. Mukhedkar, M. Green and F.G.A. Stone,
	J. Chem. Soc. A, (1970) 3166.
18	D.M. Barlex, R.D.W. Kemmitt and G.W. Littlecott,
	Chem. Commun., (1969) 613.
19	D.M. Barlex, R.D.W. Kemmitt and G.W. Littlecott,
	J. Chem. Soc. Dalton, (1971) 199.
20	P.B. Tripathy and D.M. Roundhill, J. Amer. Chem. Soc., 92
	(1970) 3825.
21	G.L. McClure and W.H. Baddley, J. Organometal. Chem., 25
	(1970) 261.
22	S. Otsuka, A. Nakamura and H. Minamida, Chem. Commun., (1969)
	1148.
23	A. Nakamura and S. Otsuka, J. Amer. Chem. Soc., 94 (1972)
	1886
24	H.C. Clark and J.H. Tsai, Inorg. Chem., 5 (1966) 1407.
25	H.C. Clark, J.D. Cotton and J.H. Tsai, Inorg. Chem., 5 (1966) 1582.
26	R.E.J. Bichler, M.R. Booth and H.C. Clark, J. Organometal. Chem.,
	24 (1970) 145.
27	H.C. Clark and T.L. Hauw, J. Organometal. Chem., 42 (1972)
	429.
28	M. Dubeck and R.A. Schell, Inorg. Chem., 3 (1964) 1757.
29	J.B. Wilford and F.G.A. Stone, Inorg. Chem., 4 (1965) 93.
30	W.H. Baddley and M.S. Fraser, J. Amer. Chem. Soc., 91 (1969)
	3661.
31	B.L. Booth and A.D. Lloyd, J. Organometal. Chem., 35 (1972)
	195.
32	H.B. Henbest and J. Trocha-Grimshaw, Chem. Commun., (1968) 757.
33	H.C. Clark and W.S. Tsang, J. Amer. Chem. Soc., 89 (1967) 529.
34	H.C. Clark and R.J.Puddephatt, Inorg. Chem., 9 (1970) 2670.
35	D.A. Harbourne and F.G.A. Stone, J. Chem. Soc. A, (1968) 1765.

.

.

- 36 A. Johnson, R.J. Puddephatt and J.L. Quirk, J.C.S. Chem. Commun., (1972) 938.
- 37 M.I. Bruce, D.A. Harbourne, F. Waugh and F.G.A. Stone, J. Chem. Soc. A, (1968) 356 and references therein.
- 38 R. Ettore, J. Organometal. Chem., 19 (1969) 247.
- 39 W.H. Baddley and G.B. Tupper, J. Organometal. Chem., 67 (1974) C16.
- 40 H.C. Clark and R.K. Mittal, Can. J. Chem., 10 (1973) 1511.
- 41 T. Blackmore, M.I. Bruce and F.G.A. Stone, J. Chem. Soc. Dalton, (1974) 106.
- 42 J.L. Davidson, M. Green, F.G.A. Stone and A.J. Welch,

J. Chem. Soc. Chem. Commun., (1975) 286.

- 43 Y. Tohda, K. Sonogashira and N. Hagihara,J. Chem. Soc. Chem. Commun., (1975) 54.
- 44 H.C. Clark, C.R.C. Milne and C.S. Wong, J. Organometal. Chem., 136 (1977) 265.
- 45 Th. Kruck, Angew. Chem. Int. Ed., 6 (1967) 53; J.F. Nixon, Advan. Inorg. Chem. Radiochem., 13 (1970) 363.
- 46 J.F. Nixon and J.R. Swain, J. Organometal. Chem., 72 (1974) C15.
- 47 P.B. Hitchcock, J.F. Nixon and J. Sinclair, Acta Cryst. B., 33 (1977) 179.
- 48 P.M. Treichel, E. Pitcher and F.G.A. Stone, Inorg. Chem., 1 (1962) 511.
- 49 W.R. Cullen, D.S. Dawson and G.E. Styan, Can. J. Chem., 43 (1965) 3392.
- 50 D.J. Burton, R.L. Johnson and R.T. Bogan, Can. J. Chem., 44 (1966) 635.
- 51 J.F. Nixon, J.S. Poland, and B. Wilkins, J. Organometal. Chem., 92 (1975) 393.
- 52 R.J. Abraham, personal communication.
- 53 D.A. Clement and J.F. Nixon, J. Chem. Soc. Dalton, (1972) 2553.
- 54 L.E. Smart, J. Chem. Soc. Dalton, (1976) 390.
- 55 H.C. Clark, P.L. Piess and C.S. Wong, Can. J. Chem., 55 (1977) 178.
- 56 M.J. Hopkinson and J.F. Nixon, unpublished results.
- 57 S.J. Tremont and R.G. Bergman, J. Organometal. Chem., 140 (1977) C12,
- 58 H. Eshtiagh-Hosseini and J.F. Nixon, J. Organometal. Chem., 150 (1978) 129.